A Timeline of Earth’s Average Temperature, xkcd-style

While I finish drafting my next post, thought I’d share something from xkcd’s Randall Munroe (http://xkcd.com/1732/).

earth_temperature_timelineearth_temperature_timeline

Oh dear.

Advertisements

Ready, Set, Year Two

I have returned from summer break to begin teaching a new course this fall.  My break  included a hiatus in blog posts; now that classes have started up, I’m back to writing them.  Other lessons from my first true “summer break:”

  1. Yep, I still love research. Summer was a refreshing change of pace, where I was able to chip away at existing research projects and establish new collaborations here in Portland.
  2. Pacific Northwest summer weather is great.  No humidity + few bugs. I didn’t think that was possible.
  3. Feelings of preparedness are relative.  Despite having a year under my belt, there are enough new tasks and responsibilities that I still feel like a newbie.

Happy back-to-school for those who live by the academic calendar, and welcome to the Reed Class of 2020.

class-of-20

The Class of 2020 at Reed College’s Convocation.  Photo by Leah Nash.

 

Spotted in the Lab

This is the last week of classes.  Reed seniors are finalizing their theses — a culmination of their year-long projects — before sending them off to faculty readers.  As we near the end, my computational biology lab has a new round of students working night and day.  Don’t worry, though – Monty the Motivation Whale is there for you.

20160425_095123

Monty’s appearance might be due to the fact that one of the Reed seniors is a lead scientist at the Orca Behavior Institute, a non-profit he started in 2015.

Pre-prints as a speedup to scientific communication

Tomorrow, I’ll sit on a panel about Open Data and Open Science as part of Reed’s Digital Scholarship Week.  I am somewhat familiar with these topics in computer science, but I decided to read up on the progress with Open Access in Biology.

As a junior professor trying to get a foothold in a research program, I’ll admit that I haven’t spent a lot of time thinking about Open Science.  In fact, the first thing I did was look up what it meant:

Open science is the movement to make scientific research, data and dissemination accessible to all levels of an inquiring society.                       – Foster Project Website

Ok, this seems obvious,  especially since so much research is funded by taxpayer dollars.  Surprisingly, Open Science is not yet a reality.  In this post, I’ll focus on the speed of dissemination – the idea that once you have a scientific finding, you want to communicate it to the community in a timely manner.

Biology findings are often shared in the form of peer-reviewed journal publications, where experts in the field comment on drafts before they are deemed acceptable for publication.  Peer-review may be controversial and even compromised (just read a few RetractionWatch posts), but in theory it’s a good idea for others to rigorously “check” your work.  However, the peer-review process can be slow. Painfully slow.  Findings are often published months to even years after the fact.

In computer science, my “home” research discipline, it’s a different story.  Computer science research is communicated largely through conferences, which often includes paper deadlines, quick peer-review turnaround times, and a chance to explain your research to colleagues.  Manuscripts that haven’t undergone peer-review yet may be posted to arXiv.org, a server dedicated to over one million papers in physics, mathematics, and other quantitative fields.  Manuscripts submitted to arXiv are freely available to anyone with an internet connection, targeting “all levels of an inquiring society.”

A biology version of the site, BioRxiv.org, was created in 2013 — more than 20 years after arXiv was established.   It only contains about three thousand manuscripts.  What is the discrepancy here?  Why is the field reluctant to change?

Last February, a meeting was held at the Howard Hughes Medical Institute (HHMI) Headquarters to discuss the state of publishing in the biological sciences. The meeting, Accelerating Science and Publication in Biology (appropriately shortened to ASAPbio), considered how “pre-prints” may accelerate and improve research.  Pre-prints are manuscript drafts that have not yet been peer-reviewed but are freely available to the scientific community.  ASAPBio posted a great video overview about pre-prints, for those unfamiliar with the idea.  While the general consensus was that publishing needs to change, there are still some major factors that make biologists reluctant to post pre-prints (see the infographic below).

This is an excellent time to talk open science in Biology.  It has become a hot topic in the last few months (though some in the field have been pushing for open science for years). The New York Times recently wrote about the Nobel Laureates who are posting pre-prints, and The Economist picked up a story about Zika virus experiment results that were released in real time in an effort to help stop the Zika epidemic.

Open Science has the potential to lead to more scientific impact than any journal or conference publication.  The obstacles are now determining what pre-prints mean to an academic’s career – in publishing the manuscripts, determining priority of discovery (meaning “I found this first”), and obtaining grants.  I rely on freely-available data and findings in my own research, yet I’ve never published a pre-print.  After writing this post, I think  I may start doing so.

preprint-opinions-graphicAdditional Sources:

Mick Watson’s 2/22/2016 post about generational change on his blog Opiniomics.

Michael Eisen’s  2/18/2016 post about pre-print posting on his blog it is NOT junk.

Handful of Biologists Went Rogue and Published Directly to Internet, New York Times, 3/15/2016.

Taking the online medicine, The Economist, 3/19/2016.

Grants keep coming to Reed Biologists

As a new computational biologist at Reed College, I was excited about the prospect of continuing to do research while teaching innovative courses.  I’ve written about the research opportunities at Reed, and faculty across campus have received over two million dollars of grant funding in 2014/2015.

The Biology Department just secured two more research grants from the M.J. Murdock Charitable Trust to investigate neurogenesis in zebrafish (Dr. Kara Cerveny) and discover candidate driver genes in cancer (me!).

Small schools also have an opportunity to play a large role in undergraduate education programs.  Another NSF grant was recently awarded to Dr. Suzy Renn to organize a STEM workshop on undergraduate involvement in the NSF’s Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative.

All in all, 2016 seems like it will be another great research year.